
The netpp HOWTO

Martin Strubel

December 19, 2023

Revision:
0.5x-develop

Why another library?

Make embedded devices talk to each other and tell each other what they are capable of

The early ideas about a framework to master the recurring task of software interfacing with
embedded devices came up in 2003. Quite a number of solutions were on the market at this
time, but none of them as either abstract enough or leave such a tiny footprint that it would
run efficiently and almost unnoticed on an embedded system or on the front end PC itself.
After a few years of refining and withstanding the requirements of scalability and robustness
in industrial applications, the common and generic framework is ready to be released as
OpenSource.
Originally, the first rewrite started out as DClib - for device control library. This toolset allowed
to describe hardware entities of a device (registers, bits, etc.) in a newly defined XML dialect
with a graphical editor and generate communication libraries from it. Those communication
libraries however, were very protocol specific, the low level physical layer was still running each
device’s proprietary communication procotol.
With emerging networked and other well standardized physical communication capabilities of
various embedded devices, the need for a unified client software came up - a software module,
that would allow to communicate with all devices that are somewhat aware of their properties.
Basically this meant a transfer of the client side DClib based communication libraries down to
the embedded target and creation of a new protocol: The network property protocol netpp.
There are various approaches to netpp, depending on whether you are a hardware developer,
firmware programmer, high level user interface programmer or project manager. This HOWTO
only gives you an overview on the mid to high level design layers of the netpp library. For the
programming details, the API documentation is most up to date. The author hopes, that this
document helps you to find an easy entry point into netpp. For all other documents covering
the different approaches, please see the main netpp resource site [netppres] Appendix 8.1.
In more recent revisions of this document, some more low level details on hardware design, in
particular covering VHDL, was added. Meaning, that the device description language is
capable of automatically generating hardware description language as well. This makes the
following work flow easy:

• Design a system on an FPGA.

• Create drivers according to automatically generated headers.

• Access the implemented FPGA peripherals using any register protocol or even netpp.

0.5x-develop 1

1
Getting started

1.1 Installing and compiling netpp

In the good tradition of OpenSource, we assume that you are a programmer and somewhat
familiar with Linux and various command line tools

netpp is heavily depending on the ’make’ tool (in particular the Gnu variant). To
automatize the building process, it is very much recommended to use Makefiles,
as demonstrated in the devices/example folder of the netpp distribution.

It is also possible with other tools (for example the Microsoft Visual C++ tools) to automatically
build source files using custom rules. However, this technique is not covered here.
Although netpp runs on many platforms and various operating systems, its home truely is a
Linux environment. For Microsoft Windows, there are various Unix-like environments such as
MinGW or Cygwin that netpp can be compiled under. Also it is possible and very convenient to
cross-compile for Windows and the embedded target on a Linux host with one ’make’ call.
Again, this technique is not covered in this HOWTO.
To install and compile netpp, obtain the netpp distribution tar file via
http://www.section5.ch/netpp and extract it using:

tar xfz netpp_dist.tar.gz

– or use your favorite archive manager.
Then you enter the created folder netpp and run make. If all goes well, you should end up
with a number of executables, the most important being:

master/master
The generic netpp client

devices/example/slave
An example device slave

See Section 1.2 how these examples are used.
If the compilation fails, see next section about prerequisites.

1.1.1 Prerequisites

• xsltproc

• GCC, Microsoft Visual C++, Borland C

• Python developer distribution (tested: v2.4-v2.7). Python 3.0 is not yet supported.

On a Linux system, these packages are normally installed using a package manager and come
with almost every distribution. On Windows, it is recommended to install the Cygwin or
MinGW/MSys distributions. They offer a large selection of various tools plus a decent command
line shell.

0.5x-develop 2

http://www.section5.ch/netpp

1.2 Testing the example

After successful compilation, you can test the example on your local host machine. Enter the
folder devices/example/ and run the slave executable by typing ./slave
You should then see the following output on the slave console:

ProbeServer listening on UDP Port 7208...

Listening on UDP Port 2008...

Listening on TCP Port 2008...

Open up another console window and enter the master/ folder. Now run the master tool by
typing ./master
If the network is set up well, a probe request will be sent out and answered by all running
slaves. Each slave responds by listing its available ports and services.

The probe request will be only answered if the target supports UDP.

You can now address a specific slave using

./master TCP:localhost

You will then get the property list as follows:

Protocol Version 1

Checksum: 0426

Properties of Device 'DerivedDevice' associated with Hub 'TCP':

Child: [10000001] 'Demo'

Child: [10000002] 'Extra'

Child: [10000003] 'Test2'

Child: [00000002] 'ControlReg'

Child: [00000003] 'ControlRegH'

Child: [00000004] 'ControlRegL'

Child: [00000009] 'FloatVal'

Child: [0000000c] 'Integer1'

Child: [00000012] 'Mode'

Child: [00000016] 'StaticString'

Child: [00000017] 'StaticTest2'

Child: [0000001a] 'VariableString'

Child: [00000020] 'Zoom'

Child: [0000000d] 'LED'

Child: [00000019] 'Stream'

Child: [0000000e] 'LUTarray'

Child: [0000000f] 'LUTvalues'

Now query a property, e.g. Mode:

./master TCP:localhost Mode

You will now see its children. To browse through the tree structure, use the typical dot
notation as in various object oriented languages:

./master TCP:localhost Mode.Fast

This is the value for the ’Fast’ operation mode. If you now wish to change the mode, try setting
it to this value:

1.2 Testing the example 0.5x-develop 3

./master TCP:localhost Mode 1

When installing a prebuilt netpp package for Debian/Ubuntu, the ’master’ tool
is just called netpp.

1.3 Using the XML editor

For XML file editing, netpp provides several auxiliary files found in the xml/ subdirectory. Most
XML editors are able to process XSD files, however it is recommended to use the XMLMind
XML Editor (XXE) [xxe] Appendix 8.1.
The most relevant support files for graphical XML editing using XXE are:

• devdesc.xsd, interfaces.xsd: The device description schema. This defines our device
description language

• devdesc.css: A cascading style sheet for the property editor

• devdesc.xxe: The addon configuration for the XXE

Before creating new XML device descriptions, it is recommended to install these files as XXE
addon. For this, it is sufficient to just link the entire xml/ directory to the addon/ directory of
the XXE distribution, giving the name devdesc. Alternatively, you can use $HOME/.xxe/addon

instead. For Windows operating systems, please check the detailed instructions at
http://www.xmlmind.com/xmleditor/addons.shtml#manual_install.
For example, under linux use the command:

ln -s ~/src/netpp/xml ~/.xxe/addon/devdesc

For XXE versions > v5.x.x, use the ~/.xxe5 directory.

Once you have successfully installed the netpp addon, you will see the DCLIB/NETPP template
option when creating a new file via the File->New menu, as shown in Fig. 1.1.
Sometimes, it can be necessary to manually modify the XML file, for example when the netpp
directory is moved elsewhere, or a relative path to the XSD file is used. In this case, open up the
XML file with a programmer text editor and look for the following line

xsi:schemaLocation="http://www.section5.ch/dclib/schema/devdesc

../../xml/devdesc.xsd"

If there is a relative path specified like above, and XXE complains it can not find the schema,
change the path accordingly.
The sample may apply to the style sheet devdesc.css, when it is not found. In this case, you have
to modify the line

<?xml-stylesheet type="text/css" href="../../xml/devdesc.css"?>

You can also change paths inside the XML editor, please consult the XML editor documentation
for detailed instructions.
Another method to specify or translate search locations, are XML catalogs. See also
xml/devdesc_catalog.xml of the netpp distribution for example.
When using the addon installation method from above, the default catalog points to the files
in xml/ of the netpp distribution.

1.3 Using the XML editor 0.5x-develop 4

http://www.xmlmind.com/xmleditor/addons.shtml#manual_install

Figure 1.1: Template choice with installed netpp addon

1.4 XML Translation

All auxiliary files to translate XML into various target formats are contained in the xml/ folder
of the netpp distribution.
Table 1.1 shows the default XSLT stylesheets coming with netpp. Some of them have a default
make rule, this means, that there is a defined rule in xml/prophandler.mk that creates the
target file from the device file. For example, make register.h will extract the register
definitions from the XML device file and create a C header file. Some files that are part of
internal netpp dependencies are always created automatically.
Most of these XLSTs are called with specific parameters. For details, see the XSLT reference in
Chapter 5.
The auxiliary prophandler.mk file is typically included from a project makefile and needs two
variables set:

NETPP
An absolute or relative path to the netpp top level directory

DEVICEFILE
The full name of the device file (should be in the local directory)

When including prophandler.mk from a separate project, it makes sense to use absolute paths
for the $(NETPP) variable.

1.4 XML Translation 0.5x-develop 5

XSLT file Generated file (default) Description

registermap.xsl - Common auxiliary translation sheet
for inclusion

registerdefs.xsl register.h Legacy: Creates register definitions
without bitfields

values.xsl register_modes.h Creates bit field mode header

reg8051.xsl - Creates register definitions header
with bitfields. Note: registermap
with id=SFR is treated specially (for
8051 compatible CPUs)

proplist.xsl proplist.c Creates the C source code property
list

userhandler.xsl handler_skeleton.c Creates a function handler skeleton

proptable.xsl device_properties.xml Creates register and property
documentation

regwrap.xsl - Creates direct register wrapping
Properties from register definition

errorhandler.xsl/errorlist.xsl (automatic) Creates generic error handler and
error code header file. Newer netpp
versions call this with a special
parameter to create custom error
handling targets. See Section 2.1.

Table 1.1: XML default style sheets

1.4 XML Translation 0.5x-develop 6

2
Creating device properties

To understand the nature of a Property, a few basics will have to be introduced. A Property is
actually a named entity, but to avoid having to deal with strings all the time, it is actually
addressed via a TOKEN. A TOKEN is just a 32 bit value, which can be arbitrarely encoded on the
target. When speaking to a device and addressing a specific property by name, the device
normally reports its token. A well matching analogy is the domain name lookup in the
internet, you get an IP number from the name server, and then you actually start
communicating. More about the TOKEN internals are found again in the API documentation
[apiref] Appendix 8.1. For now, we’ll only mention the TOKEN when it gets to technical details.
If you wish to work down from the top to the bottom and do an abstract feature set design
first, you can safely ignore the technical layer and start with the XML authoring only.
Opposed to the rather abstract nature of a property is the actual hardware definition (which is
optional). A hardware definition is required when you are actually accessing a low level
peripheral. In the most field applications, the direct access of register properties is often not
desired due to stability criterias, as guarding software routines might be missing to prevent the
writing of illegal value combinations. However, with growing intelligence of devices and clever
designs, an increasing number of peripherals already provides the safety for direct access,
moreover, direct access is always a useful strategy for a device debugging mode or the
prototyping/testing phase of a development.
Probably the most important subject is how a system reacts to errors. These can occur all the
time when using remote communication features. Therefore we will discuss netpp’s error
handling strategy first

2.1 Error handling

In general, netpp functions return an error code. Likewise, all embedded code must
communicate the failures to the netpp protocol wrapper, i.e. must return a code. The return
codes are differentiated as follows:

• <0 : Error (failure of a certain severity, depending on the code)

• >0: Warning (no failure, but attention required)

• 0: No error, all ok.

The error/warning return codes are actually defined in XML. Here, we have to differentiate
again:

• netpp native codes: errors and warnings that are intrinsic to the netpp framework

• device specific codes: error codes that are non-generic and specific to a certain device
implementation

All device specific errors are defined in the device description XML file.
By default, a netpp client (master) only knows the netpp native error code descriptions, but not
the device specific ones. To retrieve these error descriptions from the target, some kind of
lookup dictionary (a ’dict type node’) will have to be emulated. The proposed, but not yet
standardized way to do this is via the reserved ReturnCodes Property. See devices/example/

folder how this is done. Basically, the error handling extension is implemented as follows:

0.5x-develop 7

1. Implement a ReturnCodes Property (can be hidden) on the top level of your device
description according to the group template ”ErrorHandling” in example.xml

2. Implement the handler functions set_retcode_code(), get_retcode_code() and
get_retcode_description() according to the templates in handler.c

3. Create a device specific error handler using the errorhandler.xsl stylesheet by running
make errhandler.c. This implements a function device_strerr() and a code table which is
referenced by the above handler functions

4. Iterate through the ReturnCodes dictionary emulation by:

(a) Set i = 0

(b) Set ReturnCodes.Code property value to i

(c) Get ReturnCodes.Code property value to retrieve the return code, stop when this
return code is = 0

(d) Retrieve description of this code via the STRING property ReturnCodes.Desc

(e) Increment i and repeat from (b)

The netpp command line master tool implements the above method. Note: The ReturnCodes
property is now implemented as struct type property. In future, it may be a dedicated dynamic
property (dictionary type property).

2.2 Atomic Property types and their purpose

This section describes the various property types and their typical use cases. For technical and
implementation details, please refer to the API reference.

2.2.1 BOOL - Boolean, or a single bit

A boolean – the most atomic property – is normally used to address single bits within registers.
However it can also refer to a state or a two state operation mode (on or off). Typically, an
Enable property is of type BOOL.

2.2.2 INT - A 32 bit signed integer

An INT is just an integer number in the entire range of a 32 bit representation. This is normally
enough for a typical device configuration. If you need to transfer a specific byte width, use a
BUFFER type. Integer property nodes can have a Max and a Min member to denote valid
boundaries. If these boundaries are exceeded, an error will be returned by the built-in
property handler. Boundaries can also be dynamic, please refer to the API documentation for
details. A boundary node is just another property, so it does have the same attributes. For
dynamic handling of propertes, see Section 2.5.

2.2.3 MODE - An operation mode

A mode is typically an operation mode of a device. For example, you may have a video display
that is capable of two orientation modes (Portrait, Landscape) and a few video formats. On a
hardware level, this is normally implemented as a register bitfield where you write a certain
value out of a set of valid modes. These are represented by a choice node which again has a
list of valid items.

2.2 Atomic Property types and their purpose 0.5x-develop 8

2.2.4 FLOAT - A 32 bit IEEE float type

A FLOAT is just a 32 bit wide C type float value. Normally, you would have some kind of routine
to convert a float number into a valid register integer value or bit combination. Therefore, a
FLOAT property can not use a register reference (see Section 2.7.3)

2.2.5 STRING - A null terminated character array

A STRING type property is normally used to pass named cleartext strings around. However, you
are also free to use a specific encoding.

2.2.6 BUFFER - Arbitrary data blocks with defined size

Arbitrary buffer data can be passed between netpp capable clients and servers using a BUFFER
property. For example, an image frame or audio data would be transmitted using a BUFFER
property. Bulk array data can also be packed into a buffer. A possible netpp enhancement
would be to describe the data contained in a buffer as bulk packet to contain several
properties at once. This is projected for the netpp 1.0 version.
Buffer handling can be implemented ”zero copy” on some platforms, such that no data is
mirrored at extra overhead. For details, see Section 2.8.4.

2.2.7 COMMAND - An action to be executed on the target

A COMMAND property mostly represents as a button in the graphical remote control front
end. The actual value of a command normally does not matter. It is not recommended to use
different command property values to execute command options, except for debugging
purposes. Writing of a command property normally executes the action on the target, reading
the command property returns the status whether the command has executed (0), a positive
BUSY value (own warning codes can be implemented), or a negative error code.

2.2.8 REGISTER - A specific register property

This is treated the same as an INT, but without sign. This property is used to denote the access
of a raw register. However, an INT can be used safely instead. Normally, a REGISTER property is
only used for prototyping or debug mode and not exported to the netpp user.

2.3 Non-Atomic Properties

Properties can also be of a container type, such as a struct or array node. These are instanced
as a STRUCT respectively ARRAY meta type within the property list and have other properties
as children. A struct node is basically just a namespace container. An array note is much more
powerful: it can be used to define a repetition of entities with a normally fixed size. An array
property is normally introduced, when entire register tables (such as mapped memories) need
to be mapped and accessed by element instead of using a BUFFER transfer. The typical
scenarios:

• A low level peripheral, for example a sensor, has a built-in configurable look up table for
sampled values

• The device has several operation contexts which can be switched to using one variable
(e.g. an INTEGER or MODE property), but use separate configurations for these contexts

ARRAY Properties can contain STRUCT Properties, but currently not another ARRAY. Therefore,
multidimensional arrays are not supported in the current implementation.

2.3 Non-Atomic Properties 0.5x-develop 9

2.4 Special property attributes

• RO/WO: Read only, write only

• VOLATILE: Property can change. Normally, these are properties that are to be read out
repeatedly for status display

• HIDDEN: This property is not shown in the property hierarchy list. It can only be accessed
if its name or TOKEN is known.

2.5 Property access (Handlers, Variables, Registers)

Basically, a property can be implemented in the following ways:

1. As a static value, read-only

2. As a variable that is accessed through a global structure or context

3. As a hardware-implemented register or bit vector

4. As a handler routine set via a getter and a setter (depending on read/write access)

Table 2.1 gives an overview about the possible access method children nodes of a property.

Access method/implementation XML node name Typical use case

Static value, read-only value A constant identification value or
name

Globally accessible variable variable A configuration value or operation
parameter, implemented in a global
configuration option structure

Hardware-Register or bit vector regref A mapping of a hardware entity into a
named Property

Getter or setter routine handler More complex accesses or
manipulation of operation states that
involve extra actions, or Properties
that implement command sequences
(’Start’/’Stop’)

Table 2.1: Access method node lookup table

A variable or handler access node requires an implementation in C source. See API reference
for details. A static value is encoded directly in the property list. A register again is assumed to
be declared prior to the actual property definition. This will be elaborated in the next section
Section 2.7.

2.6 Dynamic properties

In some rare cases, a device might know its properties from another definition than a static
hardware description XML or generate several number of property instances automatically. For
example, a device that has a number of hot-pluggable slave devices attached may want to
enumerate its ’dumb’ clients and notify the netpp client user.
An existing case are the internal Port nodes of a Hub: On a device probe (broadcast), all
attached devices will respond and be shown as a Port property that can be connected to.

2.4 Special property attributes 0.5x-develop 10

Since properties are organized in a tree structure, auxiliary functions are supplied to build a
dynamic property device root node with children. Internally, they have a different structure
from the statically built property table. Each dynamic property is accessed by a standard TOKEN
of a specific type ’DynPropToken’.
To construct the tree, a dynamical property (’DynProp’) first needs to be allocated and then
inserted into the hierarchy. Building the DynProp occurs using the new_dynprop() function
using a Property Descriptor template. This again is a static descriptor like found in the
generated property list (proplist.c).
The following example demonstrates how to build a simple dynamic property tree:

/** A root node template */

PropertyDesc s_rootprop = {

.type = DC_ROOT,

.flags = F_RO | F_LINK /* Derived ! */,

.access = { .base = 0 }

};

/** A buffer Property Description template */

PropertyDesc s_buffer_template = {

.type = DC_BUFFER,

.flags = F_RW,

.where = DC_CUSTOM,

.access = { .custom = { buffer_handler, 0 } },

};

TOKEN prop_builder(void)

{

TOKEN root, t;

dynprop_init(80); // Reserve space for 80 dynamic properties

root = new_dynprop("DynPropDevice", &s_rootprop); // assume this never fails

t = new_dynprop("Buffer", &s_buffer_template);

if (t == TOKEN_INVALID) return t; // Check for pool excess

dynprop_append(root, t); // Insert Buffer property as first root node child

return root;

}

This example uses class derivation to support a static AND dynamic property def-
inition at the same time. See also Section 4.3.2.

Using recursive calls and the above functions, an entire statically defined property hierarchy
can be cloned as a dynamical instance. Note though that removal of dynamical properties from
the hierarchy is only supported in netpp v1.0.
Please also see API documentation about detailed usage of these functions. Also note that the
local_getroot() function must return the corresponding dynamic class token. See
devices/example/slave.c for an example.

2.6.1 Mixed static and dynamic property devices

A device can host a list of static and dynamic properties. This is achieved by derivation as
shown in the code example in the previous section.

2.6 Dynamic properties 0.5x-develop 11

Greater levels of derivation than one are not supported for a dynamic root node

2.7 Hardware definition

When implementing access to a peripheral device of an embedded system or even designing a
new peripheral, it can possibly be agreed on that the simplest approach is the register based
one. A register is merely defined as an adressable value of a certain bit width that can be read
or written by an interface using a specific low level or hardware protocol. Another
differentiation is made between protocols with synchronous and asynchronous attribues,
however this is not the scope of this HOWTO. What you have to know as a developer, is, that
you have to supply the low level register access methods by a device_read() and
device_write() function. These peripheral handlers call hardware protocol library functions or
actually implement the procotol. The interface to these functions is memory based, i.e.
specifies an address parameter and the actual data block of a certain size. Since the register bit
width can be variable, it is up to the peripheral handlers to properly decode the values from
the data block and size.

2.7.1 Address decoding: Peripheral handlers

As you have only the peripheral handler low level API which represents access through one big
linear address space, but possibly a number of peripherals attached via various bus systems or
interfaces, you will have to sort out your own address decoding. Basically, the definition of
several peripherals works as follows:

1. Create a registermap node for each peripheral

2. Inside the registermap, create the register definition nodes for each register needed. Use
the peripheral’s local, relative addressing for each register, just as it is defined in the
hardware reference

3. Depending on each peripheral’s address space, introduce a virtual address offset for each
registermap such that you can for example determine the hardware bus interface using a
bit in the so created virtual I/O space, another number of bits for the device’s address on
that bus, etc.

Inside the peripheral handler, you can then do the address decoding according to those virtual
address bit values.
Another aspect is the following: A device can be byte-addressable like a typical memory, but
also word-addressable, like on many embedded architectures. The addrsize attribute of the
registermap node defines, how many bits are accessed per address value. This attribute
specification is however optional and only used for code generation on special architectures.
Normally, you would take care of the word width inside the peripheral handler. So you have to
sort out the block size and the appropriate conversion based on the parameters to the
peripheral handler.

To communicate an illegal register size (e.g. size 1 on a 16 bit address bus) or
illegal address to the caller, return a DCERR_COMM_FRAME error code from
device_read() or device_write().

2.7 Hardware definition 0.5x-develop 12

2.7.2 Registers and Endians

There are many ways to Rome. This also represents in the various implementation of registers,
Endianness being one of the biggest issues when it comes to registers having a greater size
than eight bits: It’s the matter of transfering the low byte (little endian) or the high byte (big
endian) first. Or just the order that multi byte values have in internal memory.
You, as a programmer, may have to sort out different peripherals with different endianness.
The DClib framework offers you a few features to reduce the programming overhead, but
there are again several ways how to do it. We will just look at a few scenarios:

Different Endian devices on one bus
Use the endian attribute of the registermap node

Mixed endians on different interfaces, not sharing a bus
Possibly implement the necessary endian swapping in the peripheral handlers and
maintain a uniform endianness over the register maps

One important property of a register node is the size attribute. This is the register’s effective
size in bytes. Even if you could change the device_write() and device_read() handlers to deal
with different size units, say in bits, the netpp client and protocol always deals with bytes. If
you wish to specify a different internal addressable width, you have to use the addrsize

property of the parenting register map. This is typically only necessary for deriving a
customized hardware definition via your own translation style sheet (Section 6.2).

2.7.3 Register to property mapping

There are various in depth tutorials found at the netpp resource home page [netppres]
Appendix 8.1, but basically, the mapping works such that you simply create a regref node
inside a Property definition, containing a reference to the register node’s ID. This accesses the
entire register, if you wish to access partial bit vectors of a register only, you have to specify the
name of the bitfield defined inside the referenced register in the bits attribute. This way you
can for example map a single register bit into a boolean Property. The currently supported
type mappings for register entities are INT, REGISTER and BOOL. Float to register mappings
have to be encoded using a property handler.
For prototyping or just for generating a skeleton, automated Property instances of registers
can be created using the method in Section 4.1.

2.8 Design guides

There are many possible approaches and methods to a XML based device design. A hardware
engineer will think in terms of logic such as bits, bytes and registers, a user interface specialist
will rather focus on simplicity and least confusion for a non expert user. It may be adviseable to
start with a top to bottom design approach, but this is not always possible. Therefore, we will
again present a list of possible ways in the following sections.

2.8.1 Naming

The device description language is pretty relaxed concerning variable naming standards. The
naming of most entities accords to the XML id standard which forbids only some special
characters. This is one prerequisite to be able to turn XML into valid C code. However, since our
XML dialect introduces as little restrictions as possible, bad C code can possibly be generated by
improper naming. Therefore keep in mind: C/C++ style naming is the safest way to go.
For the naming scheme of entities, you are free in using your personal naming conventions.
However, a set of recommendations and short reasons is given for loose reference in Table 2.2.

2.8 Design guides 0.5x-develop 13

XML node Example Description Reason

property ExposureTime C++ style, avoid underscores It’s a named thing, exposed
to the user. Keep it
readable.

register Status_Control C++ style or capitals Will turn out as internal
#define, readability not an
issue. A ’Reg_’ prefix will
be prepended. Is a unique
ID

bitfield AUTO_ENABLE Capital style Not a unique ID, turns out
as internal #define

(Other nodes) simple_camera lower caps C style Just a normal ID for
internal reference

Table 2.2: Naming recommendations

When talking about naming, we also have to mention the name spaces in our XML dialect. As
you could guess, an ID must be unique, i.e. a specific id attribute name of an XML node can
only occur once in the entire XML file. The XML editor will normally warn you if you have
multiple entries of the same ID.

Reset Resets the entire device

Enable Enables the device (wakeup from standby)

PowerDown Turn off the device (if allowed)

Mode The global operation mode of the device

Table 2.3: Standard top level properties

Register definitions and device nodes for example should be unique for obvious reasons.
However, since bitfield nodes are never directly referenced but addressed by their parenting
register definition first, they do not need to have unique names. For example, you could have
an ENABLE bit in a Control register, but also in a special PowerSave register. This can be a
problem when generating a custom C header for direct access from your own routines, as there
will be conflicting #define statements. The C preprocessor will normally warn you about
redefinition of symbols. To avoid name clashes, adaptation of XSLT files is recommended such
that those symbol names are unique, for example by prepending the parenting register ID. It is
pretty much the developer’s choice, whether an approach for well-readability or
namespace-safety should be taken.

Reserved properties

For historical, but also for future compatibility reasons, some property names are reserved for
special purposes. They are listed below in Table 2.4.

2.8.2 Usage scenarios

Before starting to implement a netpp application, it is wise to think through the desired roles
of the concerning remote device components. Also, the design may be limited to a certain
scenario, depending on the physical communication layer. For example, a standard,
one-endpoint USB interface has a clear master/slave relationship by default, so the USB Host

2.8 Design guides 0.5x-develop 14

DeviceClass Defines a registered device class with minimum set of properties

XRCFile The XML GUI resource file of a device

Vendor Struct to hold all vendor specific extensions

ReturnCodes A dictionary node (netpp 1.0 spec) holding all device specific return codes
and their corresponding description strings. In current implementations,
this is emulated via handlers, see Section 2.1.

CharEncoding Character encoding to be used for strings. Not yet defined.

XMLResource XML resource file for configuration GUI

XMLDialog Main dialog name

XMLVendorURL URL to download the above XMLResource from, if not found. Can be a
list of ’;’ separated URLs.

Table 2.4: Reserved property names

will always be the master. However, this role can - under certain prerequisites - be reversed, for
example, if the USB device offers a second end point. Since this is rather hardware specific,
specific USB drivers (Hubs) must be implemented in netpp to satisfy the need of a ’slave’
channel that enables the Host to react to attention messages.
For now however, we will assume that the solution can be simpler, boiling down to a few use
cases, where the actual device control and configuration action is:

• GUI/User driven

• Automated, program or script driven

• Event driven (by device inputs, or alarm conditions)

For the User and automated approach, the front end is always a master, meaning, that the
current status of the peer device (slave) has to be polled, i.e. a specific status Property has to be
queried repeatedly from an GUI event loop (or script loop).
If the front end does not provide much command action but is rather of the monitoring nature
- like a remote display - it is preferrably implemented as slave.
In the networked world of UDP and TCP, the master/slave roles can be easily reversed, an
asynchronous two-way communication is easily implemented using threads or a main loop that
calls the netpp protocol stack sequentially in slave mode and master mode.
Also, the property approach should be thought through. Let us look at the following scenarios:

1. You are starting completely from scratch

2. You already have an existing static register map of peripherals and want to prototype

3. You have a I/O library that you want to ’property wrap’. You would therefore create
handlers.

These strategies are described in the next paragraphs.

Fresh design

A short overview will be given here how things can be done (but don’t have to):

1. For each chip you have, insert a registermap node into the XML file and add register
elements. Make sure to use relative addresses for the register specifications, not absolute
I/O mappings. The offset address of the register bank should be specified in the offset
attribute of the registermap node.

2.8 Design guides 0.5x-develop 15

2. In the device_read() and device_write() functions (peripheral handlers), you always
receive an absolute address, thus you have to do the address decoding for your
peripherals there and use the appropriate interfaces for the access.

3. Move on to the next paragraph

Existing register map

Assume you have a register map definition ready, but no properties declared yet. For
prototyping, you might want to play with registers directly. Having to hand code the
properties would be too much hassle in the first place, especially when there are many
registers. Therefore, an auxiliary style sheet regwrap.xsl can be used to create properties from
registers. See Section 4.1 how this works in detail.

Creating handlers

You do have an existing I/O library with getter/setter functions or another property API with
some guarding functionality. First, you have to differentiate, whether the function you desire
to wrap rather has the nature of a command or a property. If you execute some action on the
target that may take a longer time, it is pretty clear that you’d have to wrap this into a
COMMAND type property.
If you have a getter and/or setter, they are likely to be wrapped into a value style property.
They might also have read only or write only attributes set, depending on existance of getter
and setter.

A property handler must return within the protocol timeout, otherwise the pro-
tocol layer will report an error. If you dwell in a function for longer, do all
command executions in the main loop or another thread and check whether the
command has completed by reading the COMMAND type property. This is also
described in the API reference.

Eventually, you might end up with doing most settings by handlers, to catch forbidden settings
under constraints that are imposed by other properties. Depending on your device architecture
and complexity, it may be easier writing a handler instead of sorting out valid operation
configurations on the hardware.

2.8.3 Property change events

When you change a property on a device, it may very often be the case that the configuration
you chose affects the value of another property. Or a specific option could render a number of
Properties void or disabled. In the sense of a intuitive user interface, you would want to
communicate this change to the user.
Since the standard feedback from a slave is happening via error codes, this scenario is pretty
much covered the following way:

• If a property setting was accepted, but had affected another setting, a
DCWARN_PROPERTY_MODIFIED is returned from a dcDevice_SetProperty() call.

• To determine, what has changed, the Event type children of the property should be
queried. See API documentation for details.

• If the property has no Event children, it can be assumed that it has changed itself.

2.8 Design guides 0.5x-develop 16

Typically, you re-read the properties that have changed according to the Event children list
(which consists of property tokens).

Only handle a DCWARN_PROPERTY_MODIFIED reread action in the context of a
dcDevice_SetProperty() call. Otherwise you may possibly end up in an endless
’refresh’ loop, if the target library responds with faulty error codes.

A complex device design in conjunction with graphical user interfaces is out of scope of this
HOWTO. For detailed insights, you may want to contact the netpp authors.

An event reference is done by token. Referencing tokens outside the device
context is possible, but may cause unwanted effects when using derived classes.
Therefore, an event from a base class can currently – in the XML description - not
reference a derived class property, but vice versa. This is currently not verified by
the XML design tool.

2.8.4 Data transmission using buffer queues

netpp was designed with the least possible buffer copying overhead in mind. Therefore the
buffer handling may seem a little complicated. One principle that a programmer should never
forget:

Always be sure who owns and currently uses the buffer

Thinking in netpp properties, one has to know whether a buffer is dynamic or static on the
slave side. To elaborate: A static buffer is normally a statically declared memory range in the
targets program data section with a fixed size. For example, a version information string is
always static. A dynamic buffer can be allocated on the target ad-hoc, it may have a fixed or
dynamic size, depending on the implementation.
A buffer property is - when not static - always handled via the handler method, i.e. getters and
setters, living normally in handler.c. On a buffer transaction, these handler routines are always
called twice. On the first call, the DCvalue type field is set to the data type, i.e. DC_BUFFER or
DC_STRING and expected to return a pointer to a valid buffer in the value.p member. Also, to
prevent buffer overflow, it must return the correct size of the allocated memory buffer in the
len member.

The buffer can at this point not be altered or freed, because netpp is now trans-
fering the data

On the second call to the handler, the buffer is normally released (if inside a getter) or updated
(when inside a setter). On the second call, the type field is set to DC_COMMAND by the netpp
engine. A typical buffer handler therefore looks like:

2.8 Design guides 0.5x-develop 17

int set_buffer(DEVICE d, DCValue *in)

{

switch (in->type) {

case DC_COMMAND: // This is a buffer update action

// TODO: Fill in update code!

break;

case DC_BUFFER:

// You must do a buffer size check here:

netpp_log(DCLOG_VERBOSE, "Set buffer len %d", in->len);

if (in->len > BUFSIZE) {

in->len = BUFSIZE;

return DCERR_PROPERTY_SIZE_MATCH; // Report to client that it sent too much data

}

// Tell engine where the data will go to:

in->value.p = g_globals.buffer;

break;

default:

return DCERR_PROPERTY_TYPE_MATCH;

}

return 0;

}

If you plan to allocate buffers on the fly, you can do that just before you initialize the
in->value.p pointer and process and release/free the buffer inside the DC_COMMAND case
handler. However note that your processing time does not exceed the protocol’s timeout,
otherwise your client will not get the response in time and complain.

A buffer can not be allocated locally on the stack or your program will crash!

Means, the following handler code is strictly forbidden:

int set_buffer_NEVER_EVER(DEVICE d, DCValue *in)

{

char str[32];

in->value.p = str;

in->len = sizeof(str);

return 0;

}

Ponder again if the reason for this is not clear: The ’str’ variable only exists on the local stack
and the netpp engine will transfer the data for you, after you actually left this function. So ’str’
does no longer exist!
The above example deals with a fixed size buffer (i.e. static), but there are many more
scenarios you can cover using a handler, with respect to flexible buffer sizes:

• When writing:

– Allocate memory on the fly, according to buffersize expected by client

– Accept less data than expected and feed back to client by returning a
DCWARN_PROPERTY_MODIFIED warning.

• When reading:

2.8 Design guides 0.5x-develop 18

– If less data available than requested:

* Return DCERR_PROPERTY_SIZE_MATCH and fail early (no transmission)

* Return partial buffer and communicate effective bytes read in the len field.

– If more data available than requested (some clients may not know the buffer size a
priori)

* Fail completely, if server wants all data be picked up at once

* Only return number of requested bytes (e.g. file stream) and possibly buffer
remaining bytes

* Return DCERR_PROPERTY_SIZE_MATCH and return current buffer size in the len

field.

A python module, for example, has no knowledge about the expected buffer size. Therefore, a
first call from the client is made to the dcDevice_GetProperty() function with a zero buffer size.
A proper buffer handler supporting a python client should always cover this scenario and
report back the size according to the method listed above.
As you can see, there are some tricky aspects with respect to buffer handling. Improvements
may be found in future, please check for deeper details in the API documentation [apiref]
Appendix 8.1.

Multi user safety

Note in the above example the globally declared buffer g_globals.buffer. What if we have
several users accessing handled (non-static) buffer structures, like in a proxy server?
Simultaneous accesses from different clients could interfer with each other, apart from thread
safety. If this just is a temporary buffer for transferring some data to another buffer copy, this
is just fine. If each client should have its own buffer, this gets more tricky.
In this case, the buffer needs to be owned by the Remote Device node. The RemoteDevice
structure contains a void *localdata member where data can be stored in. Upon connection
of a remote client, the following function stack is involved:

rdev_new()
Always present on a multi user system. When CONFIG_USER_DEVICE_INIT is defined, will
call user_device_init() for specific initialization.

user_device_init()
Only references when CONFIG_USER_DEVICE_INIT defined. Must in this case be defined by
the user.

When a connection is terminated and the device node is released, structures pointed to by
localdata must be released as well. This is typically done via the cleanup() callback in the
RemoteDevice structure. If not set, it will be assigned the ServerContext default cleanup
callback. For example implementations, see $NETPP/devices/proxy/handler.c.

2.8 Design guides 0.5x-develop 19

3
Client variants

3.1 netpp master program

The netpp master control utility is very simple to use. When you call it without arguments, it
will output the following:

Usage: netpp [<target>] [<property>] [<value>]

<target> : <hub>:<port> e.g. TCP:127.0.0.1:2008

<property> : a property name

<value> : a value. The format of the value must

match its type, see below.

Depending on the number of arguments passed, this test program

has the following functionality:

[0] Show usage and list available hubs/ports

[1] Show property list of specified target

[2] Get value of specified property

[3] Set property to specified value

Available interfaces/hubs:

Child: [80000000] 'TCP'

Child: [80010000] '192.168.1.2:2008'

Child: [80000001] 'UDP'

Child: [80020000] '192.168.1.2:2008'

On the bottom you see a list of available Hubs or interfaces. These may have Port children
(which stand for a successfully probed device). A typical session would now probably continue
with an attempt to talk to one of these devices. We prefer to use TCP, because of it’s session
nature:

netpp TCP:192.168.1.2:2008

What we would get as answer:

Protocol Version 1

Checksum: 0426

Properties of Device 'DerivedDevice' associated with Hub 'TCP':

Child: [10000001] 'Demo'

Child: [10000002] 'Extra'

Child: [10000003] 'Test2'

Child: [00000002] 'ControlReg'

Child: [00000003] 'ControlRegH'

Child: [00000004] 'ControlRegL'

...[some lines removed]

This is the top level device list of the device properties. You can now query a single property
via:

netpp TCP:192.168.1.2:2008 Test2

and get

0.5x-develop 20

Type : Integer [RW.]

Value: 40

Some properties have attributes, thus display children. You can query their attribute like you’re
used in various programming languages by appending a dot ’.’ and the name, like

netpp TCP:192.168.1.2:2008 Mode.Slow

This way, you can browse the property hierarchy of any netpp-speaking device.

3.2 netpp CLI shell

When the master executable is (re)named as netpp-cli, it will open a session to the given netpp
URL.

./netpp-cli PRX:private-network.home:2014+UDP:192.168.0.44:2016

The netpp CLI shell features a simple cache, storing the associated token upon a named
request.
When typing ? , the top level properties are listed. A property is then queried the known way,
like:
netpp> LED.Blue

'LED.Blue' not in cache, querying...

Type : Boolean [RW.]

Value: FALSE (0)

The netpp-cli uses the editline library, allowing to access the history (bring back last command
using ↑), or do a search using Ctrl - R .

3.3 The C/C++ API

The C/C++ API is fully documented in the API reference and is created from the source using
the excellent documentation tool Doxygen. If you wish to generate the most up to date
documentation, you will have to install the doxygen tool and run it inside the netpp top level
directory. An online link to the API documentation can be found via
http://www.section5.ch/netpp.

3.4 Python scripting

The netpp API can be accessed through python via an extension module. In fact, there are two
modules:

1. device.so: The low level device access module

2. netpp.py: The mid level python’ish approach to property access

Normally, you would use the netpp module from your application by a simple import
statement as shown in the example below:

3.2 netpp CLI shell 0.5x-develop 21

http://www.section5.ch/netpp

import netpp

device = netpp.connect("TCP:motorserver") # Connect to remote motor controller

r = device.sync() # Synchronize with property list and obtain root node

status = r.Status.Ready.get() # Query 'Status.Ready' property

if status:

r.Motor.Speed.set(20) # Set motor speed

r.Motor.Enable.set(1) # Turn on motor

else:

print "Motor controller not ready"

The entire property hierarchy is encoded in the node class, the top node being the root node r.
An internal checksum is built over a property list which is queried by the netpp module. When
opening a connection using the connect method, the netpp module checks a local cache
whether the device is known by comparing the checksums. If it is not found or when it has
changed (differing checksum), the entire property tree will be queried from the device.
Depending on the number of properties, this can take a while. It is open for discussion,
whether a standard naming based approach within netpp should be defined for faster
download of full property hierarchies, for example downloading an XML file via a stream style
property.

3.5 GUI integration

3.5.1 wxWidgets

Specific for the wxWidget environment, there is an extended XML framework, that allows to
graphically design a dialog box or editor panel, insert widgets and directly map them to
Properties without extra programming efforts. Depending on the memory capabilities of the
embedded device, the XML dialog resource to configure the device can be stored in a property
on the device itself. This allows a generic GUI control tool for any netpp capable device to use
the following initialization procedure and fallback scenarios:

1. Initiate netpp protocol

2. Query XRCFile Property. If it exists, download the XML file and use the resource with the
same name as the name given to the device node (root node)

3. If it does not exist, query XMLResource property and look for according local file. If not
found, retrieve the file from the XMLVendorURL.

4. If that also fails, query the Property list from the device and build a Property Editor Table
from the Properties found

The GUI wrapper framework is not part of the free/OpenSource netpp distribu-
tion.

The GUI integration is fairly complex and often very custom specific, therefore the GUI
integration is offered as a separate professional service only.

3.5 GUI integration 0.5x-develop 22

3.5.2 pvbrowser/QT

The pvbrowser is an Open Source application specifically tailored to SCADA/process control. It
is based on the QT environment and is programmed in C++. It is typically run on a front end PC
and is a priori agnostic of its endpoint properties, like a standard web browser.
Further information you can find at the pvbrowser website http://pvbrowser.org/.
On the server/device side, a pvserver application is present, which delivers the GUI for the
process control. Using the pvs modhub library, netpp properties can directly map into GUI
elements just by giving them the property name according to a naming scheme. This allows
rapid design of process control and monitor user elements.
The programmer’s manual for the netpp helper and modhub library is contained in the
modhub SDK API documentation. The modhub back end is not open source.

3.5.3 Web services

Using a standard http browser to monitor and control devices is another popular option. Also,
the modhub SDK features a WSGI back end daemon that handles netpp accesses and delivers
JavaScript widgets that interact with the back end device with minimum overhead. The web
pages are automatically generated and are optimized for mobile phones.

3.5.4 National Instruments LabVIEW™

Using the OpenG LabPython plugin, a netpp wrapper can be called as virtual instrument (VI)
from within LabVIEW.
This is documented inside the examples coming with the LabVIEW support package.

3.5 GUI integration 0.5x-develop 23

http://pvbrowser.org/

4
Application notes

This chapter lists a few often practised applications for netpp or the DClib subset. Also, a few
advanced techniques are described. If you are confused by a term or a specific filename that is
not explained here, have a look at the devices/example/ folder, in particular the Makefile.

4.1 Direct register access prototyping and testing

Assume, you have created one or several registermaps for a I/O address space, for example for
FPGA and CPLD hardware attached via different interfaces. Also, you have sorted out all the
low level device access via device_read()/device_write(). Now you’d want to play with registers
to prototype functionality that is subject to change. In this case, it makes sense to export all
register definitions just as they would be properties. This is best done using the regwrap.xsl
style sheet. It generates a group and properties with same names as the register IDs. The
command to generate a register property XML file is:

xsltproc -o register_properties.xml $(NETPP)/xml/regwrap.xsl device_description.xml

To automate this process, it is best to use a Makefile rule. A ’make’ should then cover up the
entire development flow. You then use the generated (register_properties.xml) as actual
DEVICEFILE to pass on to the prophandler.mk auxiliary rule file.

4.2 Creating API/Hardware documentation using XML/Docbook

The procedure to create a basic hardware reference to your register and property descriptions
is already implemented as rule in xml/prophandler.mk.
To create the documentation for the standard example, enter devices/example and run: make
device_properties.xml
Nodes from this documentation can again be included easily using the <xi:include>

statements into your DocBook based documentation. As this documentation is written in in
DocBook using the XML editor described above, this is simply included via selection of the
desired documentation node in the generated document via the ”Copy as Reference” menu
and pasted into this documentation.
An example of an included address map documentation is shown in Table 4.1. A more detailed
example of a full device documentation is shown in Section 7.1.

4.3 Inclusion and derival of device descriptions

4.3.1 The <xi:include> statement

Assume you have a family of devices that are all making use of the same data acquisition
device or sensor. As a C programmer, you are used to a header that you include, plus you link
to a library so that you don’t have to spell out things again or be condemned to a lot of
copy-pasting, when a new revision of the sensor comes out. Likewise, you would wish for an
XML device description, so that your entire family of devices can just include one single source
definition.
This is achieved using the <xi:include> directive. This pseudo node is very powerful, you can
include specific nodes from another file into your device description.

0.5x-develop 24

Offset [Span] Name(Id) Access Description

0x00 [1] Control0 RW Control register 0

0x00 [2] Control RW Concatenated Control0 and Control1 register (16
bit width)

0x01 [1] Control1 RW Control register 1

0x02 LED_Slot1 RW LED slot 1

0x04 LED_Slot2 RW LED slot 2

0x06 LED_Status RW Status register. Writing a 1 to this register clears the
status bit and corresponding LED.

Table 4.1: Address map FPGA_i2c starting at MMR base 0x00000000

For example, if you were just ’linking’ to a register map of another device, you would use a
statement like
<xi:include href="sensor_device-1.0.xml" xpointer="reg_i2c" />

The href attribute is a direct reference to the source file, the xpointer refers to the ID of the
XML entity, in this case a <registermap> node.
If you want to export a hardware definition to another file, you have to provide it with an id

attribute.

4.3.2 Derival of a base class

Assume you have already created a complex hardware definition for a device, plus the
software handling around it. Your device may already even be out in the market. Now you are
designing a better version of the device, which has some extra features but is else downward
compatible to the ’old’ model. But you do not want to keep several software versions around
for various devices, it would be nice, if one single software could serve them all. This can be
achieved using derivation: A base device class is defined, and another class can inherit its
properties - like in C++ or Python.
The example.xml device description in devices/example of the source distribution demonstrates
how a derived device inherits the properties of a base class, can override properties and
implement special features.
Note that unlike in C++, device properties are ’runtime structures’, thus a multi-derived class
hierarchy should be carefully designed. Generally, it is a good idea - like in C++ - not to overdo
derivations but keep things simple and always evaluate the inclusion alternative described in
the previous section.
Technically, when defining a set of classes, they will end up in one file (or make use of inclusion
from other files). Note that when building a device control library, all device nodes in the
specified device description file will be translated. So you will end up with a software, that has
knowledge about the features of the entire device family.
The question is still left, how the target firmware exactly reports to the connecting client, what
device type or class it actually is. This is described in detail in the next section.

4.3.3 Advanced derival using dynamic properties

Some devices may be more complex such that they allow properties to grow at run time. As
described in the previous section, class derival is a mechanism to augment functionality of an
existing description without having to entirely reimplement it. Using dynamic properties as

4.3 Inclusion and derival of device descriptions 0.5x-develop 25

mentioned in Section 2.6, a device can have a basic set of default properties plus add other
dynamic properties on the fly.

4.4 Multiple device ’driver’

If you have a device file with multiple device definitions, your target software will have to
select one. You could see it like an USB configuration, depending on startup conditions, the
device selects a configuration from a few possible ones and reports it to the client.
The dcDevice_GetRoot() function on the client side obtains the device root node in the
beginning of a new communication. On the device (server) side, this calls the function
local_getroot() to obtain the current device’s root TOKEN. Thus, the index of the selected
device configuration is reported to the client by the return value of the local_getroot()

remote procedure call. Again, see the example in devices/example how this is realized.

4.5 Device proxies

In some cases, it might be necessary to tunnel connections to remote devices to another
protocol. For example, when accessing a group of wireless sensor devices using a different
protocol, or when it is required to run netpp through an encrypted static peer connection, a
proxy might be desired which forwards configuration requests to a different logical network
or in netpp terms: Hub.
This is a situation where a server needs to be master and slave at the same time. It may:

• Act as a slave towards the front end protocol (e.g. TCP)

• Act as a master towards the back end protocol (e.g. USB)

• Possibly handle out of band messages from the back end protocol and take local notion

• Possibly act as a master towards the front end protocol again to notify clients of
important changes (alerts)

Whenever a back end protocol (be it netpp or a different low level protocol) is to be forwarded
to a netpp server, the proxy code comes into place.
Proxies are like a normal netpp device, but with a basic set of parameters, which must include
the basic properties listed in Table 4.2. A client side proxy Hub calls a specific secondary probe
sequence when it has found a proxy Hub on the network through the discovery protocol. This
sequence is consisting of a few remote procedure calls to the proxy itself, more precisely, a
local probe request is made to the proxy which again discovers attached devices and reports
them back through a simple iteration through the basic properties.
Typically, the devices behind the proxy are called Endpoints. This somewhat corresponds to the
endpoint notion of a USB device, however in this case, endpoints can be netpp-aware remote
devices again. In theory, a device behind a proxy does not necessarily have to be an endpoint
and can again be a proxy, but this is beyond the current scope of functionality.
A proxy hub has the Hub name ”PRX”. A netpp master, if compiled with proxy support, will
poll for Proxies as well and list them like a TCP or UDP hub. If the proxy detects Endpoint
children on the basis of its tunneling protocol, it will list them and allow them to be accessed
like a normal remote device.
For example, a UDP slave behind an embedded Linux device running the proxy can be accessed
as follows:

netpp PRX:192.168.1.24:2014+UDP:192.168.0.12:2016

This is elaborated more in an example below.
For further details of proxy server development, please refer to the example source in
$(NETPP)/devices/proxy.

4.4 Multiple device ’driver’ 0.5x-develop 26

Property Type Function

Scan COMMAND Issue a device scan on the proxy

Peers ARRAY of STRING Endpoint device ID found during scan. Obtain the number
of devices found by querying the .Size member.

Open INT Open device with given index

Open STRING Open device with explicit ID

Close INT Close device with given index

Table 4.2: Basic proxy properties

4.5.1 Example: TCP to UDP proxy

Assume you have a private network 192.168.0.0 running smart sensors on a UDP basis only. This
network is physically separated from the WAN 192.168.1.0 in order to avoid interference. Now
you can have a router or embedded linux host (”modhub”) using these two interfaces,
configured such, that:

• Packets are routed to both ’0’ and ’1’ networks on modhub

• Default route is the gateway on the ’1’ network

This means though, that packets from the ’1’ network do not automatically reach the ’0’ net,
so netpp clients in the ’1’ net don’t reach a ’0’ slave unless you declare the modhub as gateway,
which is probably not what you want.
In this case you would run the proxy server on the modhub and access all netpp nodes behind
(in the ’0’ network) using an URL:

netpp PRX:192.168.1.24:2014+UDP:192.168.0.12:2016

4.5.2 Unix device I/O proxies

In some cases it might be desirable to proxy unix devices on a local target via the network. For
example, another netpp capable device may be connected to a serial interface and shall be
exposed to the network.
The netpp unix device is considered to be a ’netpp Endpoint’. The proxy however has no a
priori notion of the Endpoint, therefore the list of devices to probe for a netpp Endpoint can
be configured using an INI file, by default /etc/netpp.ini. An example is shown below.

[Proxy]

probe = /dev/ttyS0:38400

4.6 FPGA/ASIC register map definitions

Even if you are not thinking about networked communication yet, you could just make use of
the DClib XML framework to describe and document the register maps of your newly designed
sensor, ASIC, or FPGA solution. The reasons for this are mainly that you will avoid some typical
’desynchronization problems’ during development, i.e. when your colleague changes the
register map, but has forgotten to tell you, let aside the people writing the hardware
reference manual.
So, a possible design organization might look like:

4.6 FPGA/ASIC register map definitions 0.5x-develop 27

1. Keep the entire device description in one place - the device XML file

2. Maintain this device XML file using revision control software (preferrably Subversion)

3. Set up your toolchain that all code, VHDL packages and documentation parts are
re-generated when a new version of the XML file is checked out from the revision control
server.

Sooner or later you might run into limitations with the current device description dialect, for
example because you need to introduce new XML nodes that describe specific properties of
your hardware. For example, netpp is good at describing register maps, but it does not have a
language yet for command based interfaces. However, a command style structure can always
be emulated with Property based RPC calls. For extending netpp, see Chapter 6.

All hardware relevant topics are now covered by a separate SoC documentation
[soc] Appendix 8.1.

4.7 Synchronization and Versioning tricks

If you are a Subversion user, you can insert Revision ID strings into STRING type Properties,
provided that your device description file is revision controlled. The details are found in the
Subversion documentation, but basically, you insert a Subversion keyword tag $Rev: $ into
the Property string. When the file is commited, the current revision will be inserted. However,
you need to prepare Subversion to recognize these key words:

svn propedit svn:keywords device.xml # replace device.xml by your device description

Then make sure that the keyword ’Rev’ is listed in the first and only line.
After the next commit and another build, the current revision will be inserted in the revision
tag in your device file. When developing in a team using Subversion, this allows quick
synchronization checks between documentation, software and firmware.

4.7 Synchronization and Versioning tricks 0.5x-develop 28

5
XSL converter reference

All XSL converters take certain parameters to control the output or just select a particular node
from the device description. Depending on the style sheet class, there are some common
options, some are specific to the style sheet.
The XSL translation process is normally not explicitely called by the user. Instead, the common
Makefile ($NETPP/xml/prophandler.mk) takes care of the conversion process. See Table 1.1 for
generated files.
Note: All SoC and VHDL specific XSLs are documented in the SoC reference [soc] Appendix 8.1.

5.1 Style sheets for C source code conversion

Common options to source code conversion XSLs:

srcfile
[string] The source file used to create the output from (filename of device description
XML). This is typically passed from a Makefile.

selectDevice
[string] Either a string containing the id of the desired device or [integer]: an index (1..n)
matching the position in the description file.

regprefix
[string] When specified, use as prefix to the C header register definition. By default, this is
’Reg_’.

useMapPrefix
[boolean] When 1, use the parenting register map name as prefix for output symbol
generation.

5.1.1 registermap.xsl

This XSL creates the C header register definitions and address offsets for inclusion by the
software driver.
Specific parameters:

convertBitfields
[boolean] When 1, also convert bit field definitions into the resulting header file

Example snippet of created register.h:

#define FPGA_i2c_Offset REGISTERMAP_OFFSET(0x0000)

#define Reg_Control0 (FPGA_i2c_Offset + 0x00)

#define Reg_Control1 (FPGA_i2c_Offset + 0x01)

#define Reg_Control (FPGA_i2c_Offset + 0x00)

0.5x-develop 29

5.1.2 values.xsl

This XSL creates mode definitions for bit field entities.
Assume, you have a bit field called ’MODE’ in a register. This bit field accepts possible values 0,
1, 2. In this case, you would implement a MODE type property with a number of possible
choices. To reflect this definition in a header, this XSL extracts all <choice> definitions from
MODE type properties of the give device file. The default translation rule
(xml/prophandler.mk) generates a file register_modes.h, containing for example:

#define TMODE_CFG0 _BFM_(0, TMODE)

#define TMODE_CFG1 _BFM_(1, TMODE)

#define TMODE_VARIABLE _BFM_(2, TMODE)

5.2 Style sheets for graphical output

These convertor sheets are mainly used to generate meaningful graphics displaying detailed
register information (such as accessibility of single bit fields, etc.).

5.2.1 reg2svg.xsl

This XSL outputs a specific register configuration to a SVG file.
Parameters:

register
[string] Mandatory. Specifies the register to be converted into the graphical
representation.

useMapPrefix
[boolean] Prepend parenting register map name to register name output

For an output example, see Fig. 7.1.

5.2.2 regmap2latex.xsl

Creates a full register map reference using LaTeX and other optional packages. This file is part
of the professional support package.

5.3 Auxiliaries

5.3.1 linkerscript.xsl

This XSL creates a linker script from the <memorymap> node, representing the correct allocation
addresses for the bare metal physical address location of the firmware, typically the boot ROM.
For now, this is undocumented.

5.3.2 gdbscript.xsl

Creates a gdb script containing several function definitions for interactive access of memory
mapped registers, including verbose bit dumps, etc. Undocumented.

5.2 Style sheets for graphical output 0.5x-develop 30

6
Extending netpp

The netpp protocol and property design is kept somewhat atomic in order to stay robust.
However, it is not always the most efficient solution for specific implementations. It has turned
out over all those years of practical usage, that all extended functionality can be either
implemented ’on top’ using Properties or on the physical/logical transport layer. Still, many
things are open for discussion as there are numerous aspects from different use cases.
This chapter lists a few possible directions concerning extensions.

6.1 Upward/Downward compatibility considerations

• The netpp protocol

• Token and Property names

• The device description XML language

• The device description itself

These are the important points to keep in mind to keep compatibility:

The netpp procotol

There’s one rule: Protocol changes must be authorized, and the protocol number must be
increased accordingly. The protocol must be downward compatible, i.e. newer client versions
must be able to speak to old servers.

Tokens vs. Names

• The TOKEN and encoding can change (except reserved TOKEN values)

• The name should not! If it does, see below.

The device description language

The language may change and be subject to enhancements. Changes in the language will
increase the version number. For each change, a translation style sheet is required to convert
old device descriptions into the current language version.

The device description itself

You, as the developer or device vendor are responsible yourself for the versioning and
identification. It is recommended to use the Vendor top level struct Property (see Table 2.4) and
populate with your required identification tags.
Typically, a GUI application (front end) to remote control an embedded device would apply the
following strategies to fully sync with the controlled device:

• The device has a GUI description stored, which is retrieved by the front end and used to
build the user interface (such as in the netpp wxWidgets interface Section 3.5)

0.5x-develop 31

• The front end has some knowledge about the device class and assumes a few
standardized properties. This set of standardized functions may grow, so the situation
may occur, that a new front end speaks to an old device. If a recently standardized
Property does not exist on the target, a semi-userfriendly method is, to disable the
concerning widget and warn the user via a status log window.

6.2 Style sheets

The current set of style sheets included in the netpp distribution mostly cover code generation
for C source and headers, plus some auxiliary translators to create documentation templates.
However, there are many more possibilities to translate into other formats by writing another
style sheet. The XSLT translation language (which is again XML) is best covered by the W3C
resources [w3c] Appendix 8.1.

6.3 Property Naming

By default, netpp does not tell you how to name Properties. Apart from using special
characters, there are no restrictions. However when you create an entire similar class of
devices, it will make sense to stick to a consistent property naming. For example, when you
wish to emulate various logical layers of device class implementations like HID devices,
Cameras, etc, you will have to define a fixed set of properties.
For that purpose, there will be a read-only DeviceClass property in the netpp 1.0 specification.
See also Table 2.4.

6.4 Device Class design roadmap

netpp is far from defining a unified standard. It is therefore open to all kind of enhancements
and further, typically company specific standards. The short summary how a roadmap to a
’better standard’ could look like:

1. Agree on the fact that a new device class standard makes sense

2. Define registered device class name

3. Define minimum/atomic functionality set for this class (Minimal Required Property List)

The goal is, to keep a standardization process:

• As open as possible

• As unbureaucratic as possible (smart web registration procedures instead of heavy
standardization commitees)

• As automatized as possible (Web services)

• As democratic as possible

Bottomline: Look at XML and other open standards and follow the scheme that has worked
out before.

6.2 Style sheets 0.5x-develop 32

6.5 Known limitations

Here is a list of things that are missing or known as undefined in netpp 0.3:

• No local interface configuration supported in netpp 0.3/procotol v1.0. A Hub has a fixed
packet size.

• Only 32 bit signed integers supported. All other bit specific data structures are handled
only by buffer types or via meta properties (structs)

• There is no specific definition for character encoding. All enhancements are to be
discussed on top of netpp/DClib based on a descriptive property set.

• A dictionary type. This is a dynamic property node which might also allow creation of
new node members, depending on implementation.

• netpp has no built-in method of communicating device specific error descriptions. These
will be communicated using the standardized method using the optional ReturnCodes
dictionary type (dynamic property) node.

6.5 Known limitations 0.5x-develop 33

7
Examples

7.1 A generated example device documentation

Fig. 7.1 shows a generated (via reg2svg.xsl) register structure schematic.
The following section is a referenced (not copied) documentation entry for the derived device
from the standard example.

7.1.1 ExampleDevice registers

’FPGA_i2c’ core registers

Control0

Control register 0

Control1

Control register 1

Control

Concatenated Control0 and Control1 register (16 bit width)

LED_Slot1

LED slot 1

LED_Slot2

LED slot 2

LED_Status

Status register. Writing a 1 to this register clears the status bit and corresponding LED.

Figure 7.1: Example of generated register structure

0.5x-develop 34

Bit(s) Name Description

7:4 COUNT Counter value

3:1 MODE Operation mode: 0: slow, 1: fast, all set: idle

0 ENABLE 1: Enable device, 0: Standby

Table 7.1: Control0 register Address: 0x00000000

Bit(s) Name Description

15:8 HI Higher half of the register

7:0 LO Lower half of the register

Table 7.2: Control register Address: 0x00000000

’Dummy’ core registers

Mode

An operation mode register

Array_Sensors_base

Sensor array base register

Array_Sensors_offset_mode

Sensor array base register

Array_Sensors_offset_pressure

Sensor array base register

Array_LUT_base

Array base register. The size of this register defines the size of an array element, the
address is for now ignored. It is however recommended to use the Arrays start address.

Array_LUT_offset_X

Array element offset register. The size of this register must match the element size.

Array_LUT_offset_Y

Array element offset register.

Array_LUT_offset_Flags

Array flags offset register.

7.1 A generated example device documentation 0.5x-develop 35

Bit(s) Name Description

2 RED Red LED switch

1 YELLOW Yellow LED switch

0 GREEN 1: Turn on green LED, 0: off

Table 7.3: LED_Slot1 register Address: 0x00000002

Bit(s) Name Description

5:4 RED

3:2 YELLOW

1:0 GREEN

Table 7.4: LED_Slot2 register Address: 0x00000004

7.2 DerivedDevice

Device Revision: 0.1
A derived device, basic on ExampleDevice. It includes extra features, and overrides a base
feature.

7.2.1 Properties

Extra Properties

See Table 7.7

7.2 DerivedDevice 0.5x-develop 36

Bit(s) Name Description

3:2 BLUE

1:0 GREEN

Table 7.5: LED_Status register Address: 0x00000006

Bit(s) Name Description

7 LUT_ENABLE

6 LUT_UPDATE

1:0 LUT_MODE

Table 7.6: Array_LUT_offset_Flags register Address: 0x0000F080

EventTests

See Table 7.10

7.2 DerivedDevice 0.5x-develop 37

Property Type Flags Description

Extra INT RW This is an extra property, adding to the base class.

Test2 INT RW This is an example of a property overriding the previous
definition in the base class. See base class.

GPIO ARRAY RW This is an reference implementation for a GPIO bank with
multiplexed pin functionality

HandledArray ARRAY RW

Table 7.7: Property group ’Extra Properties’

Value Mode name Description

0 Input Pin is a digital input

1 Output Pin is a digital output (level according to Value)

2 AnalogIn Pin is an analog input pin

3 Alt Pin has alternate (peripheral) function

Table 7.8: Mode Pin.Func – possible values

MonitorProperties

Properties that can be volatile, or special monitor protocol properties
See Table 7.11

7.2 DerivedDevice 0.5x-develop 38

Property Type Flags Description

Func MODE RW This property determines the functionality of the pin

Value BOOL RW

Table 7.9: Array item GPIO[i]

Property Type Flags Description

Update COMMAND WO This is an auxiliary to enable a GUI to request an update
on specific properties that are not marked volatile. When
it is written, it returns an event return code.

Table 7.10: Property group ’EventTests’

Devdesc_Extra_Tests

Things that do not work in netpp (but in devdesc)
See Table 7.17

7.2 DerivedDevice 0.5x-develop 39

Property Type Flags Description

LogBuffer STRING RO

Monitor STRUCT RW

Table 7.11: Property group ’MonitorProperties’

Value Mode name Description

0 IDLE

1 OK

2 WARNING

2 ERROR

Table 7.12: Mode Item.Mode – possible values

7.3 Rapid design of a System on Chip

Analogous to various system builder software tools, I/O maps can be generated on the fly using
devdesc device descriptions. However, there is a huge number of design options and ways of
implementation such that it is almost impossible to define a generic standard. For example, a
existing system may restrict you to the usable bus width and addressing modes whereas the
attached I/O device may have different properties. In the following sections we will deal with a
few different scenarios.

7.3.1 32 Bit CPU peripheral interfacing

A typical 32 bit CPU has a 32 bit address bus and a 32 bit wide data bus. In a FPGA soft CPU
design, access to peripheral controllers is typically implemented using memory mapped
registers (MMR) in a specific I/O addressing section. To save extra addressing logic, these MMR
registers map on a 4 byte boundary, i.e. the two least significant bits in the address are zero.
Now this can turn into a little problem, when we have to map an existing peripheral map that
has a different data width into this MMR space.
To define the address mapping to various bus widths, a dummy register map with the name
MMR is created in the device description XML file. This map can contain one or more pseudo
register definitions that again contain bit fields specifying address decoding portions, the
’MMR config bitfield’. These have a internally standardized (with respect to the conversion
style sheet) prefix: MMR_CFG_. For each <registermap> node specified in the device description,
a corresponding MMR_CFG_<id> bitfield must exist. For example, you define a register map
with id ’i2c_controller’, then you have to define a bitfield called MMR_CFG_i2c_controller in
the dummy register of the MMR registermap.

It is mandatory to set the id attribute of the register map for the conversion to
HDL to operate correctly.

The MMR config bitfield is used to slice a local address portion out of the MMR address space.
A peripheral map such as an i2c controller typically gets by with eight registers, therefore only
three address lines are needed. In case of a 32 bit wide addressing however, we do not slice the
three least significant bits but skip the first two LSBs. So our MMR_CFG_i2c_controller bitfield
definition would look like:

7.3 Rapid design of a System on Chip 0.5x-develop 40

Property Type Flags Description

Zoom FLOAT RO Monitor for Zoom value

ControlReg REGISTER RO Full 16 bit access to the Control register

Thermo STRUCT RW

Sensors ARRAY RW

Table 7.13: Struct Monitor

Property Type Flags Description

Pressure INT RW

Mode MODE RW

Humidity STRUCT RW

Table 7.14: Array item Sensors[i]

<bitfield lsb="2" msb="4" name="MMR_CFG_i2c_controller">

<info>Configuration address range for i2c unit with 8 bit addressing</info>

</bitfield>

During the conversion process into VHDL, this definition creates a subtype:

subtype BV_MMR_CFG_i2c_controller is integer range 4 downto 2;

This subtype is then used to slice the required address bits from the MMR bus address in the
generated VHDL code.

7.3.2 Automatic updating

Once you have created a registermap inside a device description, the automated procedures
typically create:

1. A hardware decoding logic in HDL

2. A C header file

3. Documentation

Within a SoC design, it is desired to control this all with one call to make to keep everything in
sync. So, whenever a register definition is changed, the following happens under the hood
when executing make:

1. The C program is being recompiled with the new register addresses

2. The ROM generator creates a memory initialization file in HDL

3. The simulation or netlist file is recompiled

To simplify the building and synchronization of all files, several tools or files are involved.

soc/busgen.mk
Contains the rules to create the decoder instances and the system map package from the
device description $(DEVICEFILE)

7.3 Rapid design of a System on Chip 0.5x-develop 41

Property Type Flags Description

Threshold FLOAT RW

Value FLOAT RO

Table 7.15: Struct Humidity

Property Type Flags Description

Threshold FLOAT RW

Value FLOAT RO

Table 7.16: Struct Thermo

soc/core/buildrom.py
Python script to build a VHDL instance of a preinitialized RAM from an ELF format
executable (supports ZPU and MIPS architectures only)

These tools are typically found in the distribution of your SoC evaluation distribution.

This information is not up to date, please refer to the MaSoCist/gensoc toolchain
documentation

7.3.3 Multiple instancing of peripheral controllers

Assume a controller instance mapped somewhere in the MMR space. Now if several instances
are desired, for example a second UART, another portion of the MMR address might be needed
to select the corresponding peripheral unit. This has to be encoded in two domains:

1. The HDL domain

2. The peripheral driver C source code

A simple way to cover the C source side would be to duplicate the register map and use
different offsets. It is more elegant however, to define a macro that calculates an address
offset for each device according to the device index. This device index is sliced from the MMR
address on the hardware side, like with the MMR config bitfield from above. The selection of
the device index portion from the MMR address is therefore defined with a MMR_UNIT_<name>

bitfield entry in the MMR pseudo map. The resulting define BV_MMR_UNIT_<name> in the VHDL
code can then be used likewise. On some conversion systems, the entire instancing of
peripherals is controlled and generated automatically by a specific property section inside the
device file.

One might be tempted to use the two unused LSBs for the device index. How-
ever, this is not a portable solution and very much depends on the CPU allowing
32 bit wide data addressing to addresses that are not on a four byte boundary.

For example, a macro to access a specific UART device register map:

#define uart_dev_mmr(dev, x) \

((volatile unsigned long *) x)[(dev << (MMR_UNIT_uart_SHFT-2))]

Care must be taken with using the MMR_UNIT_<foo>_SHFT value, depending on the address
width, this must be decremented by 1 for 16 bit, 2 for 32 bit (as for the case above).

7.3 Rapid design of a System on Chip 0.5x-develop 42

Property Type Flags Description

Container STRUCT RW

Table 7.17: Property group ’Devdesc_Extra_Tests’

Property Type Flags Description

Test STRING RW

TestArray ARRAY RW

Table 7.18: Struct Container

The UART register is then simply accessed like

uart_dev_mmr(1, Reg_UART_THR) = 0x55;

This approach only works when sufficient address space is reserved between dif-
ferent controller MMR maps. Otherwise, the address decoding must be done
manually with specific functions.

7.3 Rapid design of a System on Chip 0.5x-develop 43

8
References

8.1 Bibliography

A list of documents and further pointers:

[w3c] The W3C website
URL: http://www.w3.org/

[xxe] Pixware
The XMLmind XML editor
URL: http://www.xmlmind.com/xmleditor/

[netppres] The netpp resource page
09/2011, section5::ms <hackfin@section5.ch>
URL: http://section5.ch/netppres

[apiref] The netpp API online reference
09/2009, section5::ms <hackfin@section5.ch>
URL: http://www.section5.ch/doc/netpp/html/

[devdesc] The device description XML dialect
04/2005, section5::ms <hackfin@section5.ch>
A set of schema description files, part of the netpp distribution
URL: http://section5.ch/netpp/

[soc] The gensoc package
section5::ms <hackfin@section5.ch>
The gensoc package is a netpp-addon for generation of System
On Chip register map decoders for VHDL based bus interfaces
(Wishbone or local bus).

0.5x-develop 44

http://www.w3.org/
http://www.xmlmind.com/xmleditor/
http://section5.ch/netppres
http://www.section5.ch/doc/netpp/html/
http://section5.ch/netpp

	Getting started
	Installing and compiling netpp
	Prerequisites

	Testing the example
	Using the XML editor
	XML Translation

	Creating device properties
	Error handling
	Atomic Property types and their purpose
	BOOL - Boolean, or a single bit
	INT - A 32 bit signed integer
	MODE - An operation mode
	FLOAT - A 32 bit IEEE float type
	STRING - A null terminated character array
	BUFFER - Arbitrary data blocks with defined size
	COMMAND - An action to be executed on the target
	REGISTER - A specific register property

	Non-Atomic Properties
	Special property attributes
	Property access (Handlers, Variables, Registers)
	Dynamic properties
	Mixed static and dynamic property devices

	Hardware definition
	Address decoding: Peripheral handlers
	Registers and Endians
	Register to property mapping

	Design guides
	Naming
	Usage scenarios
	Property change events
	Data transmission using buffer queues

	Client variants
	netpp master program
	netpp CLI shell
	The C/C++ API
	Python scripting
	GUI integration
	wxWidgets
	pvbrowser/QT
	Web services
	National Instruments LabVIEW™

	Application notes
	Direct register access prototyping and testing
	Creating API/Hardware documentation using XML/Docbook
	Inclusion and derival of device descriptions
	The <xi:include> statement
	Derival of a base class
	Advanced derival using dynamic properties

	Multiple device 'driver'
	Device proxies
	Example: TCP to UDP proxy
	Unix device I/O proxies

	FPGA/ASIC register map definitions
	Synchronization and Versioning tricks

	XSL converter reference
	Style sheets for C source code conversion
	registermap.xsl
	values.xsl

	Style sheets for graphical output
	reg2svg.xsl
	regmap2latex.xsl

	Auxiliaries
	linkerscript.xsl
	gdbscript.xsl

	Extending netpp
	Upward/Downward compatibility considerations
	Style sheets
	Property Naming
	Device Class design roadmap
	Known limitations

	Examples
	A generated example device documentation
	ExampleDevice registers

	DerivedDevice
	Properties

	Rapid design of a System on Chip
	32 Bit CPU peripheral interfacing
	Automatic updating
	Multiple instancing of peripheral controllers

	References
	Bibliography

